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Introduction

1. deep learning (DL) models have tremendous approximation
power. But estimation (training) requires lot of data.

2. In data-poor areas, domain knowledge and sparsity may help.

ImageNet Validation Accuracy (%]

0 70
Sparsity [%]

Fig. 4. Typical test error vs. sparsity showing Occam’s hill (network: ResNet-50 on Top-1 ImageNet).

3. The talk discusses two ideas towards that goal: Cyclical
MCMC and asynchronous MCMC.



Cyclical MCMC



Cyclical MCMC

1. 'Annealing’ / 'tempering’. Let £: X — R with minimum set
M. Set
me(x) o exp (—BrE(x)), Be > 0.
M|

2. As B 1T oo, me(+) = o) = “Dvu




Cyclical MCMC

1. Combined with the Metropolis algorithm and we get
Simulated Annealing (SA)

Thermodynamical Approach to the Traveling Salesman L. . . .
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2. For well-designed nonhom. Markov chain {X;, t > 0} with
kernels {P;, t > 0} with 7m:P; = 7, and well-chosen sequence

Bt
P(X: € -) — me(+) = 0.



Cyclical MCMC

1. It became quickly clear to the MCMC pioneers that the idea
behind SA can be used also to sample from a distribution of
interest 7 by annealing up to 1.

2. Led to parallel tempering (PT) that targets

K

T(x1,. .. XxK) X H (xx )Pk

k=1

3. And simulated tempering (ST) that targets

m(k,x) o< exp (—BkE(x)) /ck-

empering: A New Monte Carlo Scheme
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Cyclical MCMC

1. Unlike SA which remains a mysterious metaheuristics with
some theoretical backing, PT and ST benefits from the rigor

of MC theory.

2. However these algorithm come with a higher computational
price. Costly to use for DL.

3. With Cyclical MCMC, we go back to the original SA

framework.
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Cyclical MCMC

1

1. Let B : [0,1] — R such that o = 81 = 1, 5t N\,
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2. We extend t — 3; to R — R by periodic extension.
3. Let m(x) oc e=¥) a density of interest. For k > 0, we define

T (x) o exp (=B /€ (X)) -

4. Cyclical: Tk4jL = Tk-



Cyclical MCMC

1. Let P, be a Markov kernel with invariant distribution .

2. The Cyclical MCMC sampler is a nonhomog. Markov chain
{Xk, k > 0} with sequence of transition kernels {Py, k > 1}.

3. We collect samples at times jL, j =0,1,.. ..



Cyclical MCMC

1.

The Cyclical MCMC sampler is a nonhomog. Markov chain
{Xk, k > 0} with sequence of transition kernels {Pj, k > 1}.

By periodicity, its can also be viewed as a homogeneous MC
{XjL, j > 0} with transition kernel

P1><-"><PL.

Intuition: for well-chosen 3, K has very good mixing: for
1<i< L

{Pl X oo X Pg}(X,-) —7’rg(-) ~ 0.

Existing results towards that includes Holley & Stroock
(1991), Douc et al. (2004), Narayanan & Rakhlin (2017),
Andrieu et al. (2018).

Computationally the algorithm is very efficient.



Cyclical MCMC: illustration

L >
7(x) = % ZN(XW;,Z).
i=1

2. We compare Mala, cyclical Mala, SGLD, cyclical SGLD.

3. 150,000 total iterations split into 300 cycles. Collect samples
at end of cycles.

sampler

MALA

cMALA

ULA

cULA

SD

29.52 £ 6.89

4.75 +0.54

29.11 + 7.44

4.57+0.34

Table: standard deviation of number of samples in each mode




Cyclical MCMC: illustration
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Figure: scatter plots of different method in 25 gaussian mixtures



Cyclical MCMC

1. On-going work. The cosine cycles works well. But cycle
lengths requires careful tuning.

2. We need more theory.



Asynchronous MCMC



Asynchronous MCMC for Bayesian sparse deep learning

» The Gibbs sampler is a hallmark of MCMC methods.
> A density 7T(X1,X2) on X = X1 x X».
» Let m1(-|x2) and m2(+|x1) the two conditional distributions.

Algorithm (Gibbs Sampler)
1. At the k-th iteration, given X(K) = (Xl(k),Xz(k)) = (x1, %2).
1.1 Draw Xi ~ m1(:|x2), and then draw Xo ~ m(-|X1).
2. Set XUk = (X1, X,).

» Asynchronous Gibbs sampler is a modification of the Gibbs
sampler where new random draws are not automatically
broadcast.



Asynchronous MCMC for Bayesian sparse deep learning

» Asynchronous MCMC was first introduced to the best of my
knowledge in the 80’s in the CS community as a way of
speeding up simulated annealing.

> Resurfaced again recently in machine learning

1. Smola and Narayanamurthy (2010) An architecture for parallel
topic models. Proc. VLDB Endow.

2. De Sa et al. (2016) Ensuring rapid mixing and low bias for
asynchronous gibbs sampling. ICML 2016 - Volume 48.

3. Terenin and Xing (2018). Technique for proving Asynchronous
convergence results for MCMC. NIPS 2017.



Asynchronous MCMC for Bayesian sparse deep learning

» Asynch. Gibbs sampling does not maintain the correct
invariant distribution.

» For a € [0, 1], suppose that X = {0,1} x {0,1}, and

7(0,0) =0, 7(0,1) = (1,0) = 1;’, 7(1,1) = a.
0 1
0] 0 |(1-a)2
1] (1-a)/2 a

> If X = (1,1),

2
P (X9 = o™ = 1) = (172)

which will produce a biased sampling asymptotically.



Asynchronous MCMC for Bayesian sparse deep learning
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Figure: Gibbs sampler versus asynchronous Gibbs sampler for a = 0.8 and
a=0.1

» The bias is essentially
[m112(-11) = 712(-0)[lev = (1 — @) /(L + a).

» De Sa et al. (2016) formalized this using Dobrushin
coefficient.



Asynchronous MCMC for Bayesian sparse deep learning

» Suppose we have a log-likelihood function
(0) =16, D) =" fy(z), 6 € R”.
i=1

» We use a spike and slab prior for 8: for u > 1,
0 < p1 < po < oo

. oy s dogis ind [ N pY) i 6 =1
dj ~ Ber(p™), 0|0 = 0;]0; {N(O,pal) ifo;=0



Asynchronous MCMC for Bayesian sparse deep learning

The posterior distribution can be written as

—lléllo
o [P1 Po 2_ P 2
Mn D — -1 — - =
(6.60/D) o (pﬂ/po) exp (— 2110 — 05113 — 211103113 + £(05))

» Asynchronous MCMC algorithm for I1:

1. fix § and update 6 (using SGLD or standard MCMC update);
2. fix @ and update J components of § (using asynchronous
Gibbs).



Asynchronous MCMC for Bayesian sparse deep learning

Why should asynchronous update work here?
> We have
nj(6J|5—ja 0) D) ~ Ber(qj)a

where g; is driven mainly by ulog(p) and the log-likelihood
ratio
U056.0)) — L(Os6.m)) =~ —0;V j6(050.0)) — EJVJ.J- £(0).

» To illustrate, assume logistic regression.

n 0,x;) 04 ,xi)

( n (
e e
VJ€(6)22<Y,— 1+e<97x/,>>xij:Z(Yi_ 1+e<9*,xi))xlj

i=1 i=1

- (H_j - e*j) Z D,(é)x,z, — Z(ek — 9*/() Z D;(é)x;jx,-k.

k£ i=1



Asynchronous MCMC for Bayesian sparse deep learning

Algorithm (Asynch. Sparse SGLD (AS-SGLD))

1. fix & and update 0 (using Stochastic Gradient Langevin
dynamics — SGLD);

2. Given 0, select J components, for 19, and compute
G = V{(0y). Draw independently

e 4 6 -
0y ~ Ber(qu)’ ay = {1+ ea1(0Jk)e e )



Approximate correctness for linear regression

1
00) =—55ly - X0|3, # €RP, ¢2>0 known . (1)

Theorem
Under classical high dim. lin. regr. assumptions and

n > max (0, (1 +s2) log(p), J?log(p), (log(p))?).
and u> G(1+s,)% (2)

) _ 1) (s —
E, L:r?ifl ’P(&i —1) I'I(6J_1D)”

3 \* 10
< (1 — ) + exp (—C3Q*\/E+ C4J\/Iog(p)> + ;

10p

with probability at least 1 — 10/p (over the data).



Logistic regression

p = 1000, high correlation p = 5000, high correlation
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Figure: Relative error for logistic regression model. Based on 50
replications.



Logistic regression

p/n Complexity/iteration | 1000/500 | 2000/1000 | 5000/2500
Exact O(nJ||6%]|o) 5.25s 35.13s 1360.09s
Asyn O(n([[6W o + J)) 0.71s 2.19s 99.04s
SA-SGLD OB(I6W]o+J)) | 0.24s 1.44s 30.12s
Skinny-Gibbs | O(n(p V [|6%]12)) 10.50s 87.27s 1154.40s
VA O(B-J-p) 4.05s 34.42s 1243.82s

Table: Running times to convergence



Experimentation with deep learning models



Experimentation with deep learning models

» Lenet-5 and a baby VGG-16 architectures.
» Using MNIST-FASHION and Cifar-10 datasets.
» The goal is to classify small images.



Experimentation with deep learning models
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Experimentation with deep learning models

Sparsity of each layer in Lenet-5(left) and VGG(right)
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Experimentation with deep learning models

Accuracy | Density
SGD with Momentum 0.764 1
SGLD 0.8029 1
cSGLD 0.8042 1
plain SA-SGLD, u =50 0.727 0.0047
SA-cSGLD, u =50 0.758 0.0065
SA-SGLD, 10 chains, u =50 | 0.745 0.0058

Table: VGG-6 with Cifar-10 dataset



Experimentation with deep learning models

We compare

Emperical CDF

Ent (py(+[x)), and

predictive Entropy of cifarl0 dataset
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Concluding thoughts

v

We have presented two approximate MCMC ideas that we
have found very useful for large scale sparse Bayesian
modeling.

Particularly in low-data and noisy-data settings.
More theoretical analysis is needed.

In the context of DL, software and hardware to take
advantage of sparsity is also needed.

Thanks!!
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