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Introduction

1. deep learning (DL) models have tremendous approximation
power. But estimation (training) requires lot of data.

2. In data-poor areas, domain knowledge and sparsity may help.

3. The talk discusses two ideas towards that goal: Cyclical
MCMC and asynchronous MCMC.



Cyclical MCMC

Asynchronous MCMC

Experimentation with deep learning models



Cyclical MCMC
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1. ’Annealing’ / ’tempering’. Let E : X → R with minimum set
M. Set

πt(x) ∝ exp (−βtE(x)) , βt > 0.

2. As βt ↑ ∞, πt(·) ≈ π∞(·) = |·∩M|
|M| .



Cyclical MCMC

1. Combined with the Metropolis algorithm and we get
Simulated Annealing (SA)

2. For well-designed nonhom. Markov chain {Xt , t ≥ 0} with
kernels {Pt , t ≥ 0} with πtPt = πt , and well-chosen sequence
βt ,

P(Xt ∈ ·)− πt(·) ≈ 0.



Cyclical MCMC

1. It became quickly clear to the MCMC pioneers that the idea
behind SA can be used also to sample from a distribution of
interest π by annealing up to 1.

2. Led to parallel tempering (PT) that targets

π̄(x1, . . . , xK ) ∝
K∏

k=1

π(xk)
βk .

3. And simulated tempering (ST) that targets

π(k, x) ∝ exp (−βkE(x)) /ck .



Cyclical MCMC

1. Unlike SA which remains a mysterious metaheuristics with
some theoretical backing, PT and ST benefits from the rigor
of MC theory.

2. However these algorithm come with a higher computational
price. Costly to use for DL.

3. With Cyclical MCMC, we go back to the original SA
framework.



Cyclical MCMC

1. Let β : [0, 1] → R such that β0 = β1 = 1, βt ↘↗.
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2. We extend t 7→ βt to R → R by periodic extension.

3. Let π(x) ∝ e−E(x) a density of interest. For k ≥ 0, we define

πk(x) ∝ exp
(
−β(k/L)E(x)

)
.

4. Cyclical: πk+jL = πk .



Cyclical MCMC

1. Let Pk be a Markov kernel with invariant distribution πk .

2. The Cyclical MCMC sampler is a nonhomog. Markov chain
{Xk , k ≥ 0} with sequence of transition kernels {Pk , k ≥ 1}.

3. We collect samples at times jL, j = 0, 1, . . ..



Cyclical MCMC

1. The Cyclical MCMC sampler is a nonhomog. Markov chain
{Xk , k ≥ 0} with sequence of transition kernels {Pk , k ≥ 1}.

2. By periodicity, its can also be viewed as a homogeneous MC
{XjL, j ≥ 0} with transition kernel

P1 × · · · × PL.

3. Intuition: for well-chosen β, K has very good mixing: for
1 ≤ ℓ ≤ L:

{P1 × · · · × Pℓ} (x , ·)− πℓ(·) ≈ 0.

4. Existing results towards that includes Holley & Stroock
(1991), Douc et al. (2004), Narayanan & Rakhlin (2017),
Andrieu et al. (2018).

5. Computationally the algorithm is very efficient.



Cyclical MCMC: illustration

1.

π(x) =
1

25

25∑
i=1

N (x |µi ,Σ).

2. We compare MaLa, cyclical MaLa, SGLD, cyclical SGLD.

3. 150,000 total iterations split into 300 cycles. Collect samples
at end of cycles.

sampler MALA cMALA ULA cULA

SD 29.52± 6.89 4.75± 0.54 29.11± 7.44 4.57± 0.34

Table: standard deviation of number of samples in each mode



Cyclical MCMC: illustration
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Figure: scatter plots of different method in 25 gaussian mixtures



Cyclical MCMC

1. On-going work. The cosine cycles works well. But cycle
lengths requires careful tuning.

2. We need more theory.



Cyclical MCMC

Asynchronous MCMC

Experimentation with deep learning models



Asynchronous MCMC for Bayesian sparse deep learning

▶ The Gibbs sampler is a hallmark of MCMC methods.

▶ A density π(x1, x2) on X = X1 × X2.

▶ Let π1(·|x2) and π2(·|x1) the two conditional distributions.

Algorithm (Gibbs Sampler)

1. At the k-th iteration, given X (k) = (X
(k)
1 ,X

(k)
2 ) = (x1, x2).

1.1 Draw X̄1 ∼ π1(·|x2), and then draw X̄2 ∼ π2(·|X̄1).

2. Set X (k+1) = (X̄1, X̄2).

▶ Asynchronous Gibbs sampler is a modification of the Gibbs
sampler where new random draws are not automatically
broadcast.



Asynchronous MCMC for Bayesian sparse deep learning

▶ Asynchronous MCMC was first introduced to the best of my
knowledge in the 80’s in the CS community as a way of
speeding up simulated annealing.

▶ Resurfaced again recently in machine learning

1. Smola and Narayanamurthy (2010) An architecture for parallel
topic models. Proc. VLDB Endow.

2. De Sa et al. (2016) Ensuring rapid mixing and low bias for
asynchronous gibbs sampling. ICML 2016 - Volume 48.

3. Terenin and Xing (2018). Technique for proving Asynchronous
convergence results for MCMC. NIPS 2017.



Asynchronous MCMC for Bayesian sparse deep learning

▶ Asynch. Gibbs sampling does not maintain the correct
invariant distribution.

▶ For a ∈ [0, 1], suppose that X = {0, 1} × {0, 1}, and

π(0, 0) = 0, π(0, 1) = π(1, 0) =
1− a

2
, π(1, 1) = a.

0 1

0 0 (1− a)/2

1 (1-a)/2 a

▶ If X̃ (k) = (1, 1),

P
(
X (k+1) = (0, 0)|X (k) = (1, 1)

)
=

(
1− a

1 + a

)2

,

which will produce a biased sampling asymptotically.



Asynchronous MCMC for Bayesian sparse deep learning

a = 0.8
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Figure: Gibbs sampler versus asynchronous Gibbs sampler for a = 0.8 and
a = 0.1.

▶ The bias is essentially
∥π1|2(·|1)− π1|2(·|0)∥tv = (1− a)/(1 + a).

▶ De Sa et al. (2016) formalized this using Dobrushin
coefficient.



Asynchronous MCMC for Bayesian sparse deep learning

▶ Suppose we have a log-likelihood function

ℓ(θ) = ℓ(θ,D) =
n∑

i=1

fθ(zi ), θ ∈ Rp.

▶ We use a spike and slab prior for θ: for u > 1,
0 < ρ1 < ρ0 < ∞:

δj ∼ Ber(p−u), θj |δ
d
= θj |δj

ind∼
{

N(0, ρ−1
1 ) if δj = 1

N(0, ρ−1
0 ) if δj = 0



Asynchronous MCMC for Bayesian sparse deep learning

The posterior distribution can be written as

Π(δ, θ|D) ∝
(
pu
√

ρ1
ρ0

)−∥δ∥0

exp
(
−ρ0

2
∥θ − θδ∥22 −

ρ1
2
∥θδ∥22 + ℓ(θδ)

)

▶ Asynchronous MCMC algorithm for Π:

1. fix δ and update θ (using SGLD or standard MCMC update);
2. fix θ and update J components of δ (using asynchronous

Gibbs).



Asynchronous MCMC for Bayesian sparse deep learning

Why should asynchronous update work here?

▶ We have
Πj(δj |δ−j , θ,D) ∼ Ber(qj),

where qj is driven mainly by u log(p) and the log-likelihood
ratio

ℓ(θδ(j,0))− ℓ(θδ(j,1)) ≈ −θj∇jℓ(θδ(j,0))−
θ2j
2
∇(2)

jj ℓ(θ̄).

▶ To illustrate, assume logistic regression.

∇jℓ(θ) =
n∑

i=1

(
Yi −

e⟨θ,xi ⟩

1 + e⟨θ,xi ⟩

)
xij =

n∑
i=1

(
Yi −

e⟨θ⋆,xi ⟩

1 + e⟨θ⋆,xi ⟩

)
xij

− (θj − θ⋆j)
n∑

i=1

Di (θ̄)x
2
ii −

∑
k ̸=j

(θk − θ⋆k)
n∑

i=1

Di (θ̄)xijxik .



Asynchronous MCMC for Bayesian sparse deep learning

Algorithm (Asynch. Sparse SGLD (AS-SGLD))

1. fix δ and update θ (using Stochastic Gradient Langevin
dynamics – SGLD);

2. Given θ, select J components, for ϑ, and compute
G = ∇ℓ(θϑ). Draw independently

δJk ∼ Ber(qJk ), qJk =

(
1 +

ea0(θJk )

ea1(θJk )
e−θJkGJk

)−1

.



Approximate correctness for linear regression

ℓ(θ) = − 1

2σ2
∥y − Xθ∥22, θ ∈ Rp, σ2 > 0 known . (1)

Theorem
Under classical high dim. lin. regr. assumptions and

n ≳ max
(
θ−2
⋆ (1 + s3⋆) log(p), J

2 log(p), (log(p))3
)
,

and u ≥ C2(1 + s⋆)
2, (2)

E⋆

[
max

j : δ⋆j=1

∣∣∣P(δ(k)j = 1)− Π(δj = 1|D)
∣∣∣]

≤
(
1− 3

10

J

p

)k

+ exp
(
−C3θ⋆

√
n + C4J

√
log(p)

)
+

10

p
.

with probability at least 1− 10/p (over the data).



Logistic regression
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Figure: Relative error for logistic regression model. Based on 50
replications.



Logistic regression

p/n Complexity/iteration 1000/500 2000/1000 5000/2500

Exact O(nJ∥δ(k)∥0) 5.25s 35.13s 1360.09s

Asyn O(n(∥δ(k)∥0 + J)) 0.71s 2.19s 99.04s

SA-SGLD O(B(∥δ(k)∥0 + J)) 0.24s 1.44s 30.12s

Skinny-Gibbs O(n(p ∨ ∥δ(k)∥20)) 10.50s 87.27s 1154.40s
VA O(B · J · p) 4.05s 34.42s 1243.82s

Table: Running times to convergence
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Asynchronous MCMC

Experimentation with deep learning models



Experimentation with deep learning models

▶ Lenet-5 and a baby VGG-16 architectures.

▶ Using MNIST-FASHION and Cifar-10 datasets.

▶ The goal is to classify small images.



Experimentation with deep learning models
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Experimentation with deep learning models

Sparsity of each layer in Lenet-5(left) and VGG(right)
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Experimentation with deep learning models

Accuracy Density

SGD with Momentum 0.764 1

SGLD 0.8029 1

cSGLD 0.8042 1

plain SA-SGLD, u = 50 0.727 0.0047

SA-cSGLD, u = 50 0.758 0.0065

SA-SGLD, 10 chains, u = 50 0.745 0.0058

Table: VGG-6 with Cifar-10 dataset



Experimentation with deep learning models

We compare

Ent
(
p
Ŵ
(·|x)

)
, and Ent

(∫
pW (·|x)Π(dW |D)

)
.
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Concluding thoughts

▶ We have presented two approximate MCMC ideas that we
have found very useful for large scale sparse Bayesian
modeling.

▶ Particularly in low-data and noisy-data settings.

▶ More theoretical analysis is needed.

▶ In the context of DL, software and hardware to take
advantage of sparsity is also needed.

Thanks!!
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